## Implementation and Algorithms for the FPD DSM Tree 2006 Sums for FPD-East and FPD++

#### Falk Meissner and Eleanor Judd

March 21st 2006

Description: The first two layers of DSM boards build the ADC sum for each of the 8 detector modules. All these sums are available in the third layer, which sets various thresholds on each sum. The 4 FPD-East modules share 3 common thresholds and a 4<sup>th</sup> threshold is set on the sum of the North-East and South-East modules. There are 6 thresholds for several different combinations of the FPD++ modules. 8 bits are then sent to the last DSM; 3 from FPD-East and 5 from FPD++. In parallel 13 threshold bits are sent to the scaler boards.

# 1. FPD++-layer0, FPW-FW001, 002, 003, 005, 006, 007, 008, 009, 010, 011 and FPD East-layer0, FPE-FE001, 002, 003, 005, 006, 007

Input: 16 8-bit ADC values

Registers: None

LUT: Pedestal subtraction

Action:

1<sup>st</sup> Clock: Latch input

2<sup>nd</sup> Clock: Form intermediate sums

3<sup>rd</sup> Clock: Add intermediate sums to 12-bit total sum

4<sup>th</sup> Clock: Latch output

Output (0-11) ADC sum, (12-15) empty

### 2. FPD++-layer0, FPW-FW004 and FPD-East-layer0, FPE-FE004

Input: 2x7 8-bit ADC values; split module

Ch0-6 First sum Ch7-13 Second sum Ch14-15 Unused

Registers: None

LUT: Pedestal subtraction

Action:

1<sup>st</sup> Clock: Latch input

2<sup>nd</sup> Clock: Form intermediate sums

3<sup>rd</sup> Clock: Add intermediate sums to 11-bit total sum separately for

channels 0-6 and channels 7-13

4<sup>th</sup> Clock: Latch output

Output (2 cables)

Lower bits First Sum (0-10) ADC sum (11-15) empty Upper bits Second Sun

Upper bits Second Sum (16-26) ADC sum (27-31) empty

#### 3. FPD East-layer0, FPE-FE008, 010

Input: 15 8-bit ADC values from the Top/Bottom Modules

Registers: None

LUT: Pedestal subtraction

Action:

Same as FW001 above, except sums 15 channels instead of 16

Output (0-11) ADC sum, (12-15) empty

### 4. FPD-East-layer0, FPE-FE009-011

Input: 10 8-bit ADC values from Top/Bottom modules

Registers: None

LUT: Pedestal subtraction

Action: Same as FW001 above, except sums 10 channels instead of 16

Output (0-11) ADC sum (12-15) empty

## 5. FPD++-layer1, FPW-FW101 and FPD-East-layer1, FPE-FE101

Input: 8 ADC sums: 6 12-bit sums and 2 11-bit sums

Registers: FPW and FPE: Index 23

R0: Module mask (8)

This is a bit mask for the 8 inputs. For each input/bit:  $0 \Rightarrow$  do not use this

input in the sums logic,  $1 \Rightarrow$  do use this input in the sum logic

LUT: 1:1

Action:

1<sup>st</sup> Clock: Latch input

2<sup>nd</sup> Clock: Zero out those inputs whose bit in R0 is 0 and then form

intermediate sums

3<sup>rd</sup> Clock: Add intermediate sums to 14-bit module sums separately for

inputs 0-3 and inputs 4-7.

4<sup>th</sup> Clock: Latch output

#### Output (2 cables)

Lower bits: sum of channels 0-3

(0-13) ADC sum (14-15) empty

Upper bits: sum of channels 4-7

(16-29) ADC sum (30-31) empty

## 6. FPD++-layer1, FPW-FW102 and FPD-East-layer1, FPE-FE102

Input: 4 12-bit ADC sums:

Registers: FPW and FPE: Index 28

R0: Module mask (4)

This is a bit mask for the 4 inputs. For each input/bit:  $0 \Rightarrow$  do not use this

input in the sums logic,  $1 \Rightarrow$  do use this input in the sum logic

LUT: 1:1

Action:

1<sup>st</sup> Clock: Latch input

2<sup>nd</sup> Clock: Zero out those inputs whose bit is 0 in R0 and then add inputs

0-1 and 2-3 separately to form 2 13-bit sums

3<sup>rd</sup> Clock: Delay output 4<sup>th</sup> Clock: Latch output

Output (2 cables)

Lower bits: sum of channels 0-1

(0-12) ADC sum (13-15) empty

Upper bits: sum of channels 2-3

(16-28) ADC sum (29-31) empty

#### 7. FPD-layer2, L1-FP201

**NOTE**: This algorithm now uses 4 override cycles to make time to compute all the large sums and do the threshold comparisons. To compensate for the extra time 1 of the 2 blanks in the output FIFO was removed.

Input: One ADC sum per detector module

ch0: East-North ch1: East-South ch2: East-Top

ch3: East-Bottom ch4: FPD++ S1 ch5: FPD++ S2 ch6: FPD++ S3

ch7: FPD++ S4

Registers: L1: index: 30

R0: East ADC-threshold 0 (14) R1: East ADC-threshold 1 (14) R2: East ADC-threshold 2 (14) R3: S3, S4-threshold 0 (14) R4: S13, S24-threshold 0 (15) R5: S1, S2-threshold 0 (14) R6: S3, S4-threshold 1 (14) R7: S13, S24-threshold 1 (15) R8: S1234-threshold 0 (16) R9: Sum\_E threshold 0 (15)

#### LUT: 1:1

#### Action:

1<sup>st</sup> Clock: Latch input

2<sup>nd</sup> Clock: Place 3 thresholds (R0, R1, R2) on each of the 4 East inputs.

Compare S1 and S2 to R5

Compare S3 and S4 to both R3 and R6 Form sum Sum\_E = East-North + East-South Form sums S13 = S1 + S3 and S24 = S2 + S4

3<sup>rd</sup> Clock: Compare S13 and S24 to both R4 and R7

Compare Sum\_E to R9

Form sum S1234 = S13 + S24

4<sup>th</sup> Clock: Compare S1234 to R8

5<sup>th</sup>-6<sup>th</sup> Clock: Delay output of all previous clock ticks by the correct amount

so all threshold bits arrive at the 7<sup>th</sup> clock at the same time.

7<sup>th</sup> Clock: Combine threshold bits to form desired trigger bits and scaler

bits (see output list below)

8<sup>th</sup> Clock: Latch output

#### Output (2 cables)

Lower bits to last DSM LD301

- (0) S3 > R3 or S4 > R3
- (1) S13 > R4 or S24 > R4
- (2) S1 > R5 or S2 > R5
- (3) S3 > R6 or S4 > R6
- (4) S13 > R7 and S24 > R7 and S1234 > R8
- (5) Any FPD-East module > R1
- (6) Any FPD-East module > R2
- (7) NE > R0 and SE > R0 and Sum E > R9

(8-15) empty

```
Upper bits to FPD scaler
```

- (0) NE > R1
- (1) SE > R1
- (2) NE > R2
- (3) SE > R2
- (4) NE > R0 and SE > R0 and Sum\_E > R9
- (5) S3 > R3
- (6) S4 > R3
- (7) S13 > R4
- (8) S24 > R4
- (9) S1 > R5
- (10) S2 > R5
- (11) S3 > R6
- (12) S4 > R6
- (13) S13 > R7 and S24 > R7 and S1234 > R8
- (14-15) empty